Use Grepr to Avoid Observability Vendor Lock-In

Steve Waterworth
July 8, 2025
A beaver breaks through a wooden fence in a forest setting, symbolizing escape or newfound freedom, with splintered boards and scattered wood pieces on the ground.

Observability data is now a commodity. The agents to collect metrics, logs and traces are freely available from both open source and commercial vendors. Collecting the data is the easy part, the tricky bit is processing the enormous amount of data generated and turning it into actionable information. This is where the platforms from the usual suspects come into play; at a cost. That cost is directly proportional to the volume of data processed. The vendors like to generate fear, uncertainty and doubt about how essential every byte of that data is; the piece of data you chose not to send will be the piece of data you need to solve an issue. Of course, the more you send, the more it costs and the greater the return to the vendor’s shareholders. Once committed to a platform it takes considerable effort to break free, until now.

Grepr Gives You Options

Grepr slips in like a shim between the agents collecting the data and the observability platform processing the data. Using AI (machine learning) Grepr automatically identifies similar patterns across the data then uses these to send summaries for frequent entries while letting unique entries straight through; reducing data by 90%.

No data is ever discarded, all data sent to Grepr is retained in low cost storage where it can be queried and optionally backfilled (on demand) to the observability platform. Grepr provides 100% insight with 10% of the data.

A Grepr pipeline configures how this should happen. It defines the source(s) of the data, for example it could include an endpoint for Datadog and Open Telemetry agents. It specifies which low cost storage to use for all the data received. Finally it sets the ultimate destination(s) for the processed data, for example New Relic and Splunk. Optionally it may configure static rules to always include/exclude certain data and/or transform/enhance data.

This may be an extreme example but it shows what is possible when mixing and matching observability platforms.

No Longer Shackled

Changing the observability platform you use is typically a non-trivial task. Redeploying innumerable application services to change the instrumentation code, deploying and configuring new agents to ship the data. Running two observability platforms simultaneously during and after the migration to ensure no data is lost and ensuring continuity with the existing operational processes. It’s all a lot of effort and presents an insurmountable barrier for most organisations.

With Grepr the observability platform used to process the data is independent of the agents used to ship the data. Using multiple Grepr pipelines observability data can be incrementally moved from one backend to another with zero risk of losing any data; all data is retained in low cost storage. Utilising Grepr Dynamic Backfill the new observability platform can soon be up and running complete with historical data, reducing the duration needed to run two platforms simultaneously.

The highly configurable Grepr pipelines release you from vendor lock-in as well as saving 90% on platform costs by optimising the data. Exploiting low cost storage for all data means you no longer have to balance retention against cost; keep more data for longer at a lower cost. You now have the flexibility and control to manage and arbitrate where your observability data is processed

Share this post

More blog posts

All blog posts
Abstract tech-inspired blog header featuring interconnected geometric shapes on a maroon and beige split background. The left side shows a complex network of circles, squares, triangles, and cylinders connected by black arrows, while the right displays a simpler linear diagram. The design uses maroon, beige, black, and soft red tones for a modern, data-centric aesthetic.
Product

APM Signature Sampling: Enabling High-Fidelity Observability

Grepr’s Signature Sampling brings high-fidelity observability to modern systems by capturing every unique execution path without the noise or cost of traditional APM.
November 5, 2025
Diagram showing how an observability pipeline works using Grepr. Logs, traces, and metrics flow into Grepr, which collects all raw data, stores it in a data lake, and sends filtered low-noise data to observability tools like Datadog, Grafana, Splunk, New Relic, and Sumo Logic for analysis.
Engineering

What Is an Observability Pipeline (and Why It Matters More Than Ever)

Modern observability generates too much telemetry data and too little insight, and Grepr solves this by providing an intelligent observability platform that automates data processing, routing, and storage to cut costs by over 90% while preserving full visibility.
October 27, 2025
A realistic digital illustration of a beaver sitting at a wooden desk using a laptop that displays financial analytics dashboards, surrounded by glowing blue icons of security, banking, and currency in a modern tech environment.
Engineering

How DORA Redefines Logging and Observability

Grepr enables financial institutions to stay compliant with DORA by maintaining full log visibility and audit readiness at a fraction of traditional costs.
October 17, 2025

Get started free and see Grepr in action in 20 minutes.