Grepr Cost Savings Case Study

Jad Naous
June 6, 2025

Goldsky is Web3’s Realtime Data Platform, enabling developers to build powerful dApps faster with high-performance blockchain indexing, instant subgraphs, and custom data streaming pipelines. The team reached out to us 6 months ago asking for help in managing log volumes and reducing costs, because they were feeling that the value they were receiving from collecting and storing so many logs was not aligned to the spend. Grepr was deployed soon after, and we were able to reduce their Datadog logging bills by 96%.

Paymahn Moghadasian, Lead Engineer at Goldsky, was responsible for the deployment.

Deployment 

Goldsky uses Terraform internally to manage their infrastructure. They have separate staging and production environments. The Datadog agents in those environments are also managed via Terraform.

Paymahn created a pipeline and then pointed the Datadog agents for staging to Grepr within 20 minutes, and Grepr got to work. The volume was minimal, about 8 messages/second, but even with this, Grepr was getting about 80% reduction.

Paymahn left Grepr working for about a week to gain confidence, and then decided to roll out to production. Here, the situation was different because we want to minimize risk. For the prod rollout, Paymahn used Datadog’s ability to dual-ship logs, adding Grepr as a destination while continuing to send logs to Datadog at the same time. Here are the steps he took:

  1. Enable dual shipping in Datadog for logs (https://docs.datadoghq.com/agent/configuration/dual-shipping)
  2. For each service: Add a filter in Grepr to drop all logs except the service you want to migrate.
  3. Once logs for that service are passing through Grepr correctly and being received by Datadog, add a Drop Rule to drop logs for that service not coming from Grepr.
  4. Tune set up to add exceptions if needed so as not to modify existing alerts or dashboards.
  5. Run for one day to validate everything is working as expected.
  6. Repeat for the next service
  7. Optionally update some alerts or dashboards to increase reduction and use summarized data instead of raw data.
  8. Run for two weeks to validate. Turn off dual-shipping from the agents.

The whole process took 4 weeks, end-to-end.

Cost savings

For May 2025:

  • Indexed Logs: 5.7 billion messages reduced to 250 million messages = ~96% reduction
  • Ingested Logs: 12 Terabytes of logs reduced to 795 Gigabytes = ~93% reduction

Dollar savings on Goldsky’s bill were commensurate. When combined with Grepr’s costs, Goldsky was able to save over 85% of their logging spend on Datadog.

Impact on MTTR

Two words from Paymahn: “no impact”. In fact, they reported that the reduction in noise made the logs easier to read through and understand than before Grepr. 

Other benefits

  • Get time back: by tackling log costs quickly and decisively with Grepr, Goldsky was able to get back time for building their product.
  • Historical searches with no rehydrations: they were able to search through logs over multiple months without having to rehydrate them and pay an additional cost.
  • Readable logs: when noise is filtered out, it’s easier to read the logs.

In Paymahn’s words:

  1. Grepr’s immediate, high-touch, white-glove support was excellent. We always felt taken care of.
  2. The Grepr UI was good for our needs. Definitely not competitive with Datadog’s UI, but that’s not the point.
  3. Grepr’s was always up and available for us.
  4. Logs arrived at Datadog with some minimal added latency, but not enough to actually matter in any meaningful sense.

Paymahn’s final comment, “Grepr allowed us to not substantially change any of our established observability use cases or processes by essentially getting rid of the noise in the data. It's the best of both worlds, lower costs without any retraining!”

Share this post

More blog posts

All blog posts
Product

New Relic + Grepr: A Simple Setup to Slash Observability Costs

This blog post shows how to reduce log volume by up to 90% by integrating New Relic with Grepr. Using a simple Docker-based microservices demo, we walk through configuring Fluent Bit to ship logs to New Relic, then show how easily Grepr can be inserted into the pipeline to intelligently filter out noise. The result is cleaner, more actionable log data, reduced observability spend, and no disruption to existing workflows. All raw data is retained in low-cost storage and can be backfilled on demand—helping teams stay in control of both their visibility and their budget.
June 11, 2025
Product

Grepr vs Cribl

Grepr and Cribl both offer data pipelines for observability, but they differ in complexity and approach. Cribl is a powerful, flexible platform requiring significant setup, ongoing management, and learning its custom query language. Grepr is the newer, simpler option, using AI to automate data filtering and reduce manual configuration by 90%. While Cribl offers more integrations, Grepr supports common sources, uses familiar query languages, and enables faster, lower-maintenance deployment. Cribl suits large enterprises with dedicated teams, while Grepr is ideal for organizations seeking a faster, more automated solution.
May 30, 2025
Product

Backfill Brilliance: Cut Observability Storage Costs While Boosting Clarity with Grepr

Grepr reduces observability costs by storing all data in low-cost storage and using machine learning to forward only unique or summarized insights to platforms like DataDog, Splunk, or New Relic. Engineers can query retained data, generate reports, power AI, or trigger dynamic backfill during incidents—automatically via webhooks or manually through the Grepr interface. To learn more or request a demo, visit grepr.ai.
May 23, 2025

Get started free and see Grepr in action in 20 minutes.